Bibliography in .NET Receive DataMatrix in .NET Bibliography

Bibliography using none toattach none in web,windows application How to Use Visual Studio 2010 [12] A. Blum and R. none none L.

Rivest. Training a 3-node neural network is NP-complete. In Neural Information Processing Systems 1, pages 494 501.

Morgan Kaufmann, 1989. [13] A. Blum and R.

L. Rivest. Training a 3-node neural network is NP-complete.

Neural Networks, 5(1):117 127, 1992. [14] G. Brassard and P.

Bratley. Algorithmics: Theory and Practice. Prentice Hall, 1988.

[15] A. Conrad, T. Hindrichs, H.

Morsy, and I. Wegener. Wie es dem springer gelang, schachbretter beliebiger groesse und zwischen beliebig vorgegebenen anfangs- und endfeldern vollstaendig abzuschreiten.

Spektrum der Wissenschaft, pages 10 14, February 1992. [16] A. Conrad, T.

Hindrichs, H. Morsy, and I. Wegener.

Solution of the knight s Hamiltonian path problem on chessboards. Discrete Applied Mathematics, 50:125 134, 1994. [17] S.

A. Cook. The complexity of theorem proving procedures.

In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151 158. ACM Press, 1971. [18] D.

Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9:251 280, 1990. [19] T. H.

Cormen, C. E. Leiserson, and R.

L. Rivest. Introduction to Algorithms.

MIT Press, 1990. [20] P. Cull and J.

DeCurtins. Knight s tour revisited. Fibonacci Quarterly, 16:276 285, 1978.

[21] E. W. Dijkstra.

A Discipline of Programming. Prentice Hall, 1976. [22] E.

W. Dijkstra. Some beautiful arguments using mathematical induction.

Acta Informatica, 13:1 8, 1980. [23] P. Eades and B.

McKay. An algorithm for generating subsets of xed size with a strong minimal change property. Information Processing Letters, pages 131 133, 1984.

[24] L. Euler. Solution problematis ad geometriam situs pertinentis.

Comentarii Academiae Scientarum Petropolitanae, 8:128 140, 1736. [25] L. Euler.

Solution d une question curieuse qui ne paroit soumise a aucune ` analyse. Mem. Acad.

Sci. Berlin, pages 310 337, 1759. [26] S.

Even. Graph Algorithms. Pitman, 1979.

. 170 [27] M. Gardner . The Mathematical Puzzles of Sam Loyd.

Dover, 1959.. Bibliography [28] M. R. Garey an d D.

S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman, 1979.

[29] A. M. Gibbons.

Algorithmic Graph Theory. Cambridge University Press, 1985. [30] R.

L. Graham, D. E.

Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science.

Addison-Wesley, 1989. [31] R. L.

Graham, B. L. Rothschild, and J.

H. Spencer. Ramsey Theory.

John Wiley & Sons, 1990. [32] R. L.

Graham and J. H. Spencer.

Ramsey theory. Scienti c American, 263(1), July 1990. [33] D.

H. Greene and D. E.

Knuth. Mathematics for the Analysis of Algorithms. Birkh user, 1982.

a [34] D. Harel. Algorithmics: The Spirit of Computing.

Addison-Wesley, 1987. [35] B. R.

Heap. Permutations by interchanges. Computer Journal, 6:293 294, 1963.

[36] L. E. Horden.

Sliding Piece Puzzles. Oxford University Press, 1986. [37] E.

Horowitz and S. Sahni. Fundamentals of Computer Algorithms.

Computer Science Press, 1978. [38] W. A.

Johnson. Notes on the 15 puzzle 1. American Journal of Mathematics, 2(4):397 399, 1879.

[39] J. S. Judd.

Learning in networks is hard. In Proc. of the First International Conference on Neural Networks, pages 685 692.

IEEE Computer Society Press, 1987. [40] J. S.

Judd. Neural Network Design and the Complexity of Learning. PhD thesis, University of Massachusetts, Amherst, MA, 1988.

[41] J. S. Judd.

On the complexity of loading shallow neural networks. Journal of Complexity, 4:177 192, 1988. [42] J.

S. Judd. Neural Network Design and the Complexity of Learning.

MIT Press, 1990. [43] R. M.

Karp. Reducibility among combinatorial problems. In R.

E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations. Plenum Press, New York, 1972..

Bibliography [44] J. H. Kingston .

Algorithms and Data Structures: Design, Correctness, Analysis. Addison-Wesley, 1990. [45] D.

E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.

Addison-Wesley, second edition, 1973. [46] D. E.

Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, 1973.

[47] D. E. Knuth.

Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, second edition, 1981. [48] R.

E. Korf. Depth- rst iterative deepening: An optimal admissible tree search.

Arti cial Intelligence, 27(1):97 109, 1985. [49] D. Kornhauser, G.

Miller, and P. Spirakis. Coordinating pebble motion on graphs, the diameter of permutation groups, and applications.

In 25th Annual Symposium on Foundations of Computer Science, pages 241 250. IEEE Computer Society Press, 1984. [50] D.

C. Kozen. The Design and Analysis of Algorithms.

Springer-Verlag, 1992. [51] C. W.

H. Lam and L. H.

Soicher. Three new combination algorithms with the minimal change property. Communications of the ACM, 25(8), 1982.

[52] Lewis and Denenberg. Data Structures and Their Algorithms. Harper Collins, 1991.

[53] J.-H. Lin and J.

S. Vitter. Complexity results on learning by neural nets.

Machine Learning, 6:211 230, 1991. [54] X.-M.

Lu. Towers of Hanoi problem with arbitrary k 3 pegs. International Journal of Computer Mathematics, 24:39 54, 1988.

[55] E. Lucas. R cr ations Math matiques, volume 3.

Gauthier-Villars, 1893. e e e [56] U. Manber.

Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989. [57] D.

Michie, J. G. Fleming, and J.

V. Old eld. A comparison of heuristic, interactive, and unaided methods of solving a shortest-route problem.

In D. Michie, editor, Machine Intelligence 3, pages 245 255. American Elsevier, 1968.

[58] B. M. E.

Moret and H. D. Shapiro.

Design and E ciency, volume 1 of Algorithms from P to NP. Benjamin/Cummings, 1991. [59] C.

H. Papadimitriou and K. Steiglitz.

Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, 1982..

Copyright © . All rights reserved.